

ARCS01C

Residual current detection module for AC charging equipment

- 6mA DC residual current (IEC 62955)
- 6mA DC and Type A 30mA AC residual current (IEC 62752; IEC 61008-1/60947-2 + IEC 62955)

- Optional 5V DC or 12V DC interface versions to fully meet different design requirements
- DC 6mA and Type-A 30mA +DC 6mA two-circuit independent fault alarm
- The shell is equipped with a self-test button and indicator light to facilitate production line and on-site problem troubleshooting
- Can be flexibly hung on the charging cable or fixed inside the charging pile
- A cost-effective product designed for new national and European standard AC charging equipment

Specifications

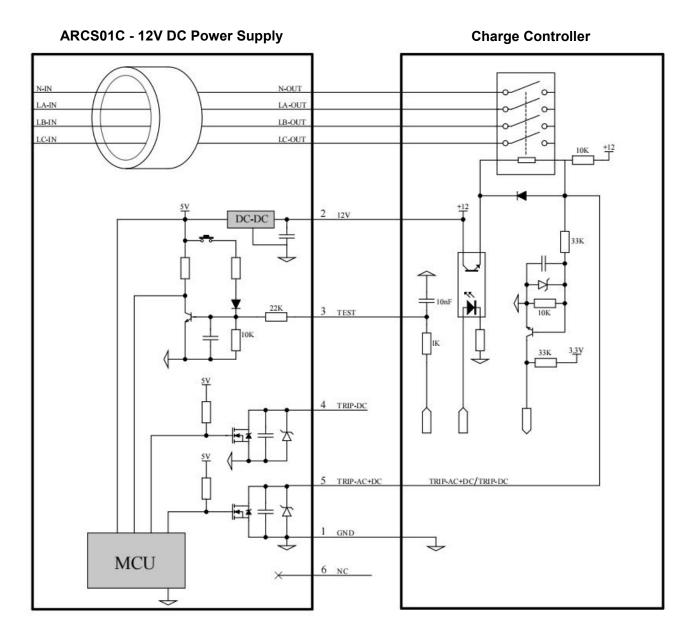
#	Technical Parameters		ARCS01C-05-H1	ARCS01C-12-H1
101		Rated working voltage	230/400VAC	230/400VAC
102		Rated working current	≤ 32A	≤ 32A
103	Manitaring singuit	Pole number	1P+N / 3P+N	1P+N / 3P+N
104	Monitoring circuit	Rated frequency	50Hz	50Hz
105		Rated impulse withstand voltage	6kV	6kV
106		Overvoltage category	III	III
201	Rated supply voltage	of control circuit, Vcc	5VDC±3%	12VDC±20%
202	Power consumption		<500mW	<500mW
203	Control circuit pin 1		Vcc 5VDC	GND
204	Control circuit pin 2		AC&DC trip signal	+12VDC
205	Control circuit pin 3		GND	Test
206	Control circuit pin 4		CAL	DC trip signal
207	Control circuit pin 5		Test	AC&DC trip signal
208	Control circuit pin 6	Control circuit pin 6		-
301	Rated residual DC op	Rated residual DC operating current I△dc		6mA
302	Rated residual DC no	n-operating current I△ndc	3mA	3mA
303	Rated residual AC op	d residual AC operating current I△n 30mA		30mA
304	Rated residual AC no	residual AC non-operating current I△nc 15mA		15mA
305	Electrical life		20,000	20,000
306	Operating temperatu	Operating temperature		-40~85 ℃
307	Pollution degree		2	2

Residual current detection related characteristics

Action current

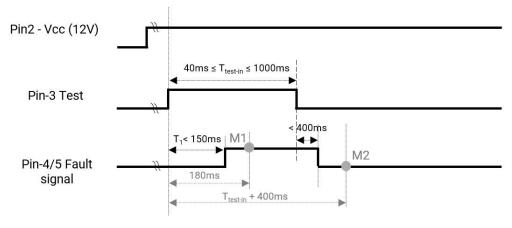
#	Description		AC&DC fault alarm pin Action current	DC fault alarm pin Action current
401		Smoothed DC	4.0~6.0 mA	4.0~6.0 mA
402		Two-phase rectification	4.0~7.0 mA	4.0~7.0 mA
403		Three-phase rectification	4.0~6.2 mA	4.0~6.2 mA
404	Residual Action Current	Sinusoidal AC	22.0~28.0 mA	-
405		Pulsating DC A0 degree	10.5~42.0 mA	-
406		Pulsating DC A90 degree	7.5~42.0 mA	-
407		Pulsating DC A135 degrees	3.3~42.0 mA	-

Action time

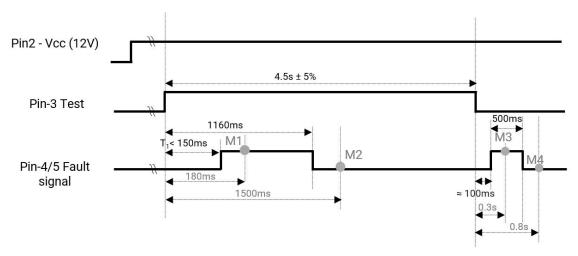

#	Description			AC&DC fault alarm pin Action time	DC fault alarm pin Action time
501		County DC	6mA	≤ 500 ms	≤ 500 ms
502			60mA	≤ 200 ms	≤ 200 ms
503		Smooth DC	200mA	≤ 70 ms	≤ 70 ms
504			300mA	≤ 20 ms	-
505			60mA	≤ 200 ms	≤ 200 ms
506		Two-phase rectification Three-phase rectification Sinusoidal AC	200mA	≤ 70 ms	≤ 70 ms
507	Residual Current		300mA	≤ 20 ms	-
508	Action Time		60mA	≤ 200 ms	≤ 200 ms
509			200mA	≤ 70 ms	≤ 70 ms
510			300mA	≤ 20 ms	-
511			30mA	≤ 80 ms	> 10000 ms
512			60mA	≤ 60 ms	> 300 ms
513			150mA	≤ 20 ms	> 80 ms
514			5A	≤ 20 ms	> 80 ms

12V DC Power Supply Version Application Introduction

Typical Application Integration


Note:

- The 12V DC power supply version has a Mosfet integrated inside the module, and its maximum on-off current is 500mA.
- Control circuit pin 6 is only used inside the module and should be left floating without connection



Self-test Timing Diagram

If the control circuit Pin 3 - Test is connected to a high level for 40ms to 1000ms, the self-test procedure without calibration is activated. t1 is the response time to the simulated leakage current inside the module.

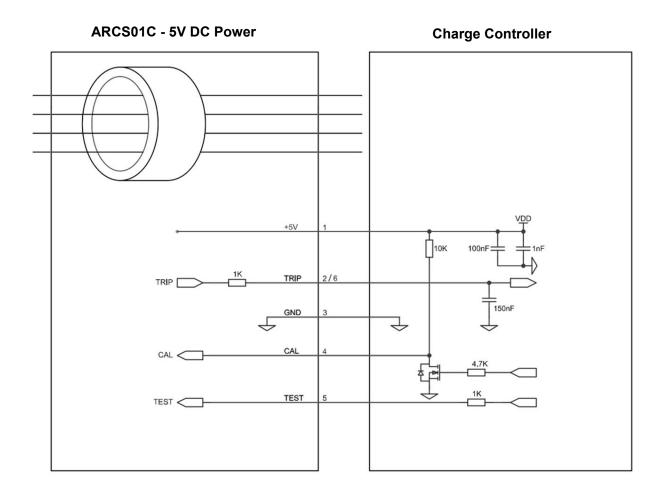
Calibration Timing Diagram

If the control circuit Pin 3 - Test is connected to a high level for 4.5s ± 5%, calibration is performed after the module self-test is completed. Calibration can be performed regularly (for example, during the charging pile startup self-test) or after a special event (for example, a main circuit short circuit).

Note: During calibration, the main circuit must be disconnected, and no residual current or any other current can flow through the sensor to prevent abnormal product calibration values. In addition, the power supply voltage of the control circuit Pin 2 - Vcc should be maintained at 12VDC ± 20%

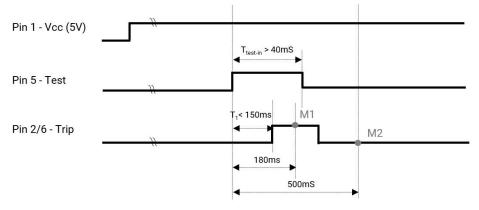
Output Status Table

Status	PIN 4 Output (DC Failure Alarm)	PIN 5 Output (AC & DC Failure Alarm))
Normal Status	GND	GND
I _△ ≥ 6 mA DC	High impedance	High impedance
I _△ ≥ 30 mA AC	GND ¹⁾	High impedance
$I_{\triangle} \ge 30$ mA AC & $I_{\triangle} \ge 6$ mA DC	High impedance	High impedance

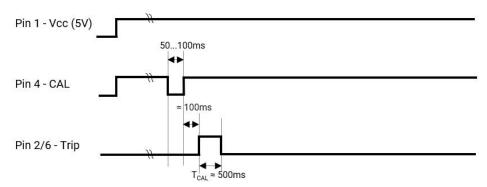

¹⁾ A state change from GND to high impedance is permitted in accordance with IEC 62955.

5V DC Power Supply Version Application Introduction

Typical Application Integration


Note:

• It is strictly forbidden to directly connect the control circuit pin 2/6 to the on-off device such as relay or contactor, otherwise it may cause product damage. It is recommended that the control circuit pin 2/6 fault alarm signal be monitored by the MCU of the charging controller.



Self-test Timing Diagram

If the control circuit Pin 5 - Test is connected to a high level for more than 40ms, the self-test procedure without calibration is activated. t1 is the response time to the simulated leakage current inside the module.

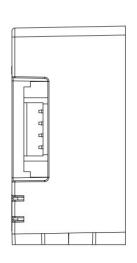
Calibration Timing Diagram

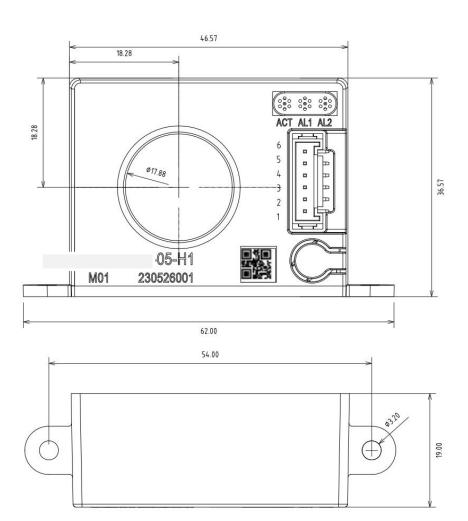
If the control loop Pin 4 - CAL is pulled low to GND and lasts for 50mS to 100mS, the module enters calibration mode. Calibration can be performed regularly (for example, during the self-test process of the charging pile startup) or after a special event occurs (for example, the main circuit is short-circuited).

Note: The main circuit must be disconnected during calibration, and no residual current or any other current can flow through the sensor to prevent abnormal product calibration values. In addition, the power supply voltage of the control circuit Pin 1 - Vcc should be maintained at 5VDC ± 3%

Output Status Table

Status	Pin 2 Output (AC & DC fault alarm)	PIN 6 Output (DC fault alarm)
Normal Status	GND	GND
I _△ ≥ 6 mA DC	High level	High level
I _△ ≥ 30 mA AC	High level	GND ¹⁾
$I_{\triangle} \ge 30$ mA AC & $I_{\triangle} \ge 6$ mA DC	High level	High level


¹⁾ A state change from GND to high level is permitted in accordance with IEC 62955.



Mechanical Dimensions

ARCS01C-05-H1 / ARCS03C-12-H1:

	Pin 1	Pin 2	Pin 3	Pin 4	Pin 5	Pin 6
ARCS01C-05-H1	5V DC	AC & DC Trip	GND	CAL	Test	DC Trip
ARCS01C-12-H1	GND	+12V DC	TEST	DC Trip	AC & DC Trip	NC

Ordering Information

#	Product No.	Product Description
1	ARCS01C-05-H1	ARCS01C Residual current detection module 5V DC interface, Type A 30 mA+DC6mA / DC6mA, 32A, 1P+N / 3P+N HY 2.0 -6 pin
2	ARCS01C-12-H1	ARCS01C Residual current detection module 12V DC interface, Type A 30 mA+DC6mA / DC6mA, 32A, 1P+N / 3P+N HY 2.0 -6 pin

Additional Information

- Do not allow strong static electricity to approach the residual current detection module, as static electricity can damage the chip inside the module. Take electrostatic protection measures when handling the module.
- Do not drop the module or apply any other mechanical stress to the module, as such stress may change the performance characteristics of the module.
- To ensure accurate detection of the module, keep a proper distance from components that generate strong magnetic fields, such as relays or contactors.
- When designing AC charging equipment with integrated residual current protection function, please strictly comply with the product standards for relevant residual current protection devices.

The module is easily damaged by electrostatic discharge (ESD) events, and electrostatic protection measures should be taken when handling the module.

Guangzhou Aipu Electron Technology Co., Ltd

Address: Building 4, HEDY Park, No.63, Punan Road, Huangpu Dist, Guangzhou, China.

Tel: 86-20-84206763 Fax: 86-20-84206762 Hotline: 400-889-8821 E-mail: sales@aipu-elec.com Website: https://www.aipupower.com